STRUCTURAL AND FUNCTIONAL ANALYSIS OF AMINOACID SEQUENCES OF 3-DEOXY-D- ARABINOHEPULOZONAT-7-PHOSPHATE SYNTHASE TYPE I FROM PSEUDOMONAS SUBSP. CHLORORAPIS AURANTIACA B-162

  • A. Babarykina BSU
  • K. Verameyenka BSU
  • N. Maximova BSU Belarusian State University
Keywords: 3-deoxy-D-arabinoheptuloose-7-phosphate synthase, allosteric regulation, phenazines, P. chlororaphis subsp. aurantiaca B-162.

Abstract

The aim of the study is the structural and functional characteristics of the amino acid sequences of isoenzymes of DAGP synthases of the first type in the Pseudomonas chlororaphis subsp. aurantiaca B-162. Research methods: microbiological, molecular genetic, bioinformatics, phylogenetic analysis methods.
Results. In the course of this study, in the bacterial genome P. chlororaphis subsp. aurantiaca B-162, two isoforms of subtype Ia DAGP synthases, DAHPIα1 and DAHPIα2, were found. Comparison of the nucleotide sequences of these enzymes showed 60% identity between them. Analysis of amino acid sequences DAHPIα1 and DAHPIα2 in P. chlororaphis subsp. aurantiaca B-162 demonstrated that only DAHPIα2 contains an allosteric tyrosine binding site in its structure. The second enzyme DAHPIα1 has an undescribed consensus in the literature and is involved in the formation of an allosteric binding site for a currently unidentified regulator.
Genome of P. chlororaphis subsp. aurantiaca B-162 encodes two isoforms of DAHP synthase Ia subtype, DAHPIα1 and DAHPIα2. Nucleotide sequences of these enzymes show 60% identity. Analysis of amino acid sequences of DAHPIα1 and DAHPIα2 from P chlororaphis subsp. aurantiaca B-162 demonstrated that only DAHPIα2 contains in its structure the allosteric site for tyrosine binding. DAHPIα1 enzyme has a consensus that is not described in the literature and that is involved in the formation of the allosteric binding site for unidentified regulator

Author Biographies

A. Babarykina , BSU

PhD student at the department of genetics,  faculty of biology

K. Verameyenka , BSU

PhD (biology); associate professor at the department of genetics,  faculty of biology

N. Maximova, BSU Belarusian State University

doctor of science (biology), full professor;  head of the department of genetics, faculty of biology

References

1.Bbosa G , Mwebaza N , Odda J, et. al. Antibiotics/antibacterial drug use, their marketing and promotion during the post-antibiotic golden age and their role in emergence of bacterial resistance. Health. 2014; 6(5): 410-425. doi: 10.4236/health.2014.65059.
2.Веремеенко Е.Г., Леончик Е. В., Максимова Н. П. Анализ биологической активности феназинового комплекса бактерий Pseudomonas chlororaphis subsp. aurantiaca в отношении нормальных и малигнизированных клеточных линий // Журнал Белорусского государственного университета. Биология. 2017. № 3. С. 14-20. [Veremeenko EG, Liavonchyk KV, Maximova NP. Analysis of the biological activity of the phenazine complex of Pseudomonas chlororaphis subsp. aurantiaca in relation to normal and malignant cell lines. J. Belarus. State Univ. Biol. 2017;( 3): 14 -20 (in Russ.).]
3.Ziouziou H., Andrieu C., Laurini E., Karaki S., Fermeglia M., Oueslati R., Taieb D., Camplo M., Siri O., Pricl S., Katsogiannou M., Rocchi P. Targeting Hsp27/eIF4E interaction with phenazine compound: a promising alternative for castration-resistant prostate cancer treatment. Oncotarget. 2017; 8: 77317-77329. doi: 10.18632/oncotarget.20469
4.Veremeenko E, Maksimova N. Activation of the antioxidant complex in Pseudomonas aurantiaca— Producer of phenazine antibiotics. Microbiology. 2010, 79(4):439-444.
https://doi.org/10.1134/s0026261710040041
5.Pierson L, Pierson E. Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Applied Microbiology and Biotechnology. 2010; 86(6): 1659-1670. https://doi.org/10.1007/s00253-010-2509-3
6.Zucko J., Dunlap W, Shick J, et al. Global genome analysis of the shikimic acid pathway reveals greater gene loss in host-associated than in free-living bacteria. BMC GENOMICS. 2010; 11(1).
https://doi.org/10.1186/1471-2164-11-628
7.Webby C, Baker H, Lott J, et. al. The structure of 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis reveals a common catalytic scaffold and ancestry for type I and type II enzymes. Journal of Molecular Biology. 2005;
354(4): 927-939. https://doi.org/10.1016/j.jmb.2005.09.093
8.Sterritt O, Lang E, S, et al. Kessans. Structural and functional characterisation of the entry point to pyocyanin biosynthesis in Pseudomonas aeruginosa defines a new 3-deoxy-d-arabino-heptulosonate 7phosphate synthase. Bioscience Reports. 2018; 38(5). https://doi.org/10.1042/bsr20181605
9.ExPASy: SIB Bioinformatics Resource Portal - Home /Электронный ресурс URL: https://www.expasy.org.
10. ESPript: analysis of multiple sequence alignments in PostScript /Электронный ресурс URL:http://espript.ibcp.fr/ESPript/ESPript/
11. Light S, Anderson W. The diversity of allosteric controls at the gateway to aromatic amino acid biosynthesis. Protein Science: A Publication of the Protein Society. 2013; 22(4): 395-404.
https://doi.org/10.1002/pro.2233
12. Schofield L, Anderson B, Patchett M, et. al. Substrate ambiguity and crystal structure of Pyrococcus furiosus 3-deoxy-D-arabino-heptulosonate-7phosphate synthase: an ancestral 3-deoxyald-2ulosonate-phosphate synthase? Biochemistry. 2005;
44(36): 11950-11962. https://doi.org/10.1021/bi050577z
13. Shumilin I, Bauerle R, Wu J,et al. Crystal structure of the reaction complex of 3-deoxy-Darabino-heptulosonate-7-phosphate synthase from Thermotoga maritima refines the catalytic mechanism and indicates a new mechanism of allosteric regulation. Journal of Molecular Biology. 2004; 341(2):455-466. https://doi.org/10.1016/j.jmb.2004.05.077
14. Cross P, Pietersma A, Allison T, et al. Neisseria meningitidis expresses a single 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase that is inhibited primarily by phenylalanine. Protein science : a publication of the Protein Society.2013;22(8):187-199. https://doi.org/10.1002/pro.2293
15. Cross P.The Functional Unit of Neisseria meningitidis 3-Deoxy-ᴅ-Arabino-Heptulosonate 7Phosphate Synthase Is Dimeric. PLOS ONE. 2016; 11(2): P. e0145187. https://doi.org/10.1371/journal.pone.0145187
16. Sneath P. Relations between chemical structure and biological activity in peptides. Journal of Theoretical Biology. 1966;12(2): 157-195. https://doi.org/10.1016/0022-5193(66)90112-3
17. Shumilin I, Zhao C, Bauerle R, et al. Allosteric inhibition of 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase alters the coordination of both substrates. Journal of Molecular
Biology.2002; 320( 5):1147-1156. https://doi.org/10.1016/s0022-2836(02)00545-4
18. Helmstaedt K, Strittmatter A, Lipscomb W. Evolution of 3-deoxy-D-arabino-heptulosonate-7phosphate synthase-encoding genes in the yeast Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America.
2005; 102(28):9784-9789. https://doi.org/10.1073/pnas.0504238102
19. Cross P, Dobson R, Patchett M. Tyrosine latching of a regulatory gate affords allosteric control of aromatic amino acid biosynthesis. The Journal of Biological Chemistry. 2011; 286(12):10216-10224. https://doi.org/10.1074/jbc.m110.209924
20. Ahmad S, Rightmire B, Jensen R. Evolution of the regulatory isozymes of 3-deoxy-D-arabinoheptulosonate 7-phosphate synthase present in the Escherichia coli genealogy. Journal of Bacteriology.
1986; 165(1):146-154. https://doi.org/10.1128/jb.165.1.146-154.1986
Published
2021-05-14
How to Cite
Babarykina , A., K. Verameyenka, and N. Maximova. 2021. “STRUCTURAL AND FUNCTIONAL ANALYSIS OF AMINOACID SEQUENCES OF 3-DEOXY-D- ARABINOHEPULOZONAT-7-PHOSPHATE SYNTHASE TYPE I FROM PSEUDOMONAS SUBSP. CHLORORAPIS AURANTIACA B-162 ”. EurasianUnionScientists, May, 4-10. https://bio-med.euroasia-science.ru/index.php/Euroasia/article/view/703.