SYNTHESIS OF ALLOYS OF THE Sb2Se3-CuCr2Te4 SYSTEM AND PHYSICO-CHEMICAL PROPERTIES
Abstract
The interaction in the quasi-ternary system Sb2Se3-CuTe-Cr2Te3 along the Sb2Se3-CuCr2Te4 section was studied by methods of physicochemical analysis: differential thermal (DTA), X-ray phase (XRD), microstructure (MSA), as well as by measuring the density and its microhardness and plotted. The phase diagram of the system is quasi-binary, eutectic type. The composition of the double eutectic formed in the system is 20 mol % CuCr2Te4 and a temperature of 490°C. As a result of the analysis of the microstructure, it was determined that there are single-phase fields based on the original components. It was found that at room temperature, solid solutions based on Sb2Se3 extend to 5 mol % CuCr2Te4, and on the basis of CuCr2Te4 solid solutions reach 13 mol % Sb2Se3.
References
2. Zhou Y., Wang L., Chen S., Qin, S., Liu X., Chen J., Xue D.-J., Luo M., Cao Y., Cheng Y., Sargent E. H., and Tang J. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics. 2015. V. 9. № 6. P. 409–415. https://doi.org/10.1038/nphoton.2015.78
3. Praveen KumarT.S., Sathiaraj Thangaraj R. Optical properties of amorphous Sb2Se3:Sn films // J. Philosophical Magazine Letters. 2010. V. 90. Issue 3. P. 183-192 https://doi.org/10.1080/09500830903520704.
4. Maghraoyi-Mehezi H., Ben Nasr T., Dachraoui M. Synthesis, structure and optical properties of Sb2Se3. Materials Science in Semiconductor Processing 2013. V. 16. P. 179-184. https://doi.org/10.1016/j.mssp.2012.04.019
5. Chen C., Li W., Zhou Y., Chen C., Luo M., Liu X., Zeng K., Yang B., Zhang C., Han J., Tang J. Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation // Applied Physics Letters. 2015. V. 107. № 4. P. 043905.
6. Chen C., Bobela D.C., Yang Y. et al. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics // Front. Optoelectron. 2017. V. 10. P. 18–30. https://doi.org/10.1007/s12200-017-0702-z
7. Ju T., Koo B., Jo J. W., & Ko M. J. Enhanced photovoltaic performance of solution-processed Sb2Se3 thin film solar cells by optimizing device structure // Current Applied Physics, 2020. V. 20. № 2. P. 282-287. https://doi.org/10.1016/j.cap.2019.11.018
8. Magomedov A.Z., Aliev A.O., Aslanov M.A., Musaeva S.M., Dzhavadova S.D. Osobennost temperaturnoj zavisimosti spektralnogo raspredeleniya fotochuvstvitelnosti segnetoelektrikov-poluprovodnikov Sb2S3-Sb2Se3 // Vestnik Bakinskogo Universiteta, ser.fiz-mat. nauk, 2004. № 4. C.163-169.
9. Magomedov A.Z., Aliev A.O., Talybova D.A., Dzhahangirova S.A., Mamedov R.M., Aslanov M.A. Osobennosti Volt-Ampernoj harakteristiki segnetopoluprovodnikovyh kristallov sistemy Sb2S3-Sb2Se3.// Vestnik NANA. 2007. № 5. C. 87-93.
10. Magomedov A.Z., Gasanova L.G., Aliev A.O., Mamedov A.A., Aslanov M.A. Akusticheskie issledovaniya kristallov tverdyh rastvorov sistemy Sb2S3-Sb2Se3. //Fizika XIII. 2007. № 4. C.164-166.
11. Belov K.P., Tretyakov Yu.D., Gordeev I.V., Koroleva L.I., Pedko A.V., Bagorova S.D., Alferov V.A., Saksonov Yu.G., Shalimova M.A. Magnitnye svojstva halkogenidnyh shpinelej CdxCuxCr2S4, CdCr2Se4-y FeCr2S4-y // FTT. 1973. T.15. № 10. S. 3106-108.
12. Sever G.N. Anomalnyj fotomagnitoelektricheskij effekt v UDK 66.001.001.57:66.022:621.926/929 ferrimagnitnom poluprovodnike CdCr2Se4 // FTP. 1983. T. 17. №8.-S.1505-507.
13. Shumilkin N. S. Vzaimodejstvie v sistemah Su-In-Sg-Se(Te) v oblasti sushestvovaniya magnitnyh faz s vysokimi temperaturami magnitnogo uporyadocheniya (Ts). Dis. na soisk. kand. him. nauk. RAN IONH im. N.S.Kurnakova. 2002. 121 s.
14. Yamashita O., Yamauchi H., Yamaguchi Y. et.al. Magnetic Properties of the System CuCr2Se4.xYx (Y=C1, Br) // J. Phys. Soc. Jap. 1979. V. 47. № 2. P. 450-454.
15. Koroleva L.I., Lukina L.N., Busheva E.V., Shabunina GG., Aminov T.G Novye magnitnye poluprovodniki CuCr2Se4-xSbx // Izv. AN SSSR. Neorgan. materialy. 1999. T. 35. № 12. S.14251428.
16. Fiziko-himicheskie svojstva poluprovodnikovyh veshestv. Spravochnik. Moskva. Izd. Nauka.1979. 339 c.
17. Aliev I.I., Ismailova S.Sh., Shahbazov M.G. Issledovanie vzaimodejstviya v sisteme As2Te3-CuCr2Te4 // Zhurn. Evrazijskij Soyuz uchenyh. 2019. T. № 6(63). S.46-49.
18. Takeshi Suzuyama, Junji Awaka, Hiroki Yamamoto, Shuji Ebisua, Masakazu Ito, Takashi Suzuki, Takao Nakama, KatsumaYagasaki, Shoichi Nagata. Ferromagnetic-phase transition in the spineltype CuCr2Te4 // Journal of Solid State Chemistry. 2006. V. 179. № 1. P. 140-144. https://doi.org//10.1016/j.jssc.2005.10007
CC BY-ND
A work licensed in this way allows the following:
1. The freedom to use and perform the work: The licensee must be allowed to make any use, private or public, of the work.
2. The freedom to study the work and apply the information: The licensee must be allowed to examine the work and to use the knowledge gained from the work in any way. The license may not, for example, restrict "reverse engineering."
2. The freedom to redistribute copies: Copies may be sold, swapped or given away for free, in the same form as the original.