PHASE DIAGRAM OF THE PB-MNSE SYSTEM
Abstract
Methods of physical and chemical analysis (DTA, MSA, RFA, as well as the definition of microhardness and density) studied the phase equilibrium in the system Pb-MnSe and built its state diagram. It is established that the Pb-MnSe system is a quasi-binary cross-section of the triple system Mn-Pb-Se and is of the eutectic type. The components Pb and MnSe form between the degenerate eutectic composition, which corresponds to 3 mol. % MnSe and melts at 310 ° C. It was found that solid solutions on the basis of MnSe in the system at room temperature reach 3.5 mol. % Pb, and solid solutions on the basis of Pb is practically not installed.
References
Norihiro Suzuki, Katsuyuki Sawai, and Sadao Adachi. Optical properties of PbSe // Journal of
Applied Physics. 1995. V.77. P. 1249. https://doi.org/10.1063/1.358926
Delaire O. et al. Giant a harmonic phonon scattering in PbTe // Nat. Mater. 2011. V. 10. P. 614.
Chen Y., Xinyuan A. & Marianetti C. A. Firstprinciples approach to nonlinear lattice dynamics: anomalous spectra in PbTe // Phys. Rev. Lett. 2014. V. 113. P. 105501.
Gayner C., Kar K. K. & Kim W. Recent progress and futuristic developments of PbSe thermoelectric materials and devices // Mater. Today Energy. 2018. V. 9. P. 359–376.
Shulumba N., Hellman O. & Minnich A. J. Intrinsic localized mode and low thermal conductivity of PbSe // Phys. Rev. 2017. V. 95. P. 014302.
Chen Z. et al. Vacancy-induced dislocations within grains for high-performance PbSe thermoelectrics // Nat. Commun. 2017. V. 8. P. 13828. Romero A. H. Gross, E. K. U., Verstraete, M. J. & Hellman, O. Thermal conductivity in PbTe from first principles // Phys. Rev. 2015. V. 91. P. 214310.
Wang H., Pei Y., LaLonde A. D. & Snyder, G. J. Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe // Proc. Natl Acad. Sci. USA 2012. 109. P. 9705–9709.
Ribeiro, G. A. S. et al. Strong anharmonicity in the phonon spectra of PbTe and SnTe from first principles // Phys. Rev. 2018 V. 97. P. 014306.
Li, C. W. et al. Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics // Phys. Rev. Lett. 2014. V. 112. P. 175501. Yanushkevich K.I., Viktorov I.A., Bodnar I.V.
Kristallicheskaya struktura i magnitnaya vospriimchivost CuInSe2)i.x(2MnSe)x. // Zh. Fizika tverdogo tela, 2009. 51. № 1. C. 104-108. Makoveckij G.I., Galyas A.I., Yanushkevich K.I. Strukturnye, magnitnye i elektricheskie svojstva tverdyh rastvorov sistemy tellurid hroma - tellurid marganca // FTT. 1997. T.39. № 2. S. 320-324.
Makoveckij G.I., Galyas A.I.
Nejtronograficheskoe issledovanie strukturnyh i magnitnyh fazovyh perehodov v selenide marganca // Fizika tverdogo tela. 1982. T. 24. № 9. S. 2753- 2756.
Mullin D.P., Galazka R.R., Furdyna J.K. Microwave helicon propagation and the dynamic magnetic susceptibility in Hgi.xMnxSe // Phys. Rev. 1981. V.24. № 1. P. 355-362
Aplesnin S.S., Ryabinkina L.I., Romanova
O.B., Badaev D.A., Demidenko O.F., Yanushkevich K.I., Miroshnichenko N.S. Vliyanie orbitalnogo uporyadocheniya na transportnye i magnitnye svojstva MnSe i MpTe // FTT. 2007. T.49. № 11.
S.1984-1989
Bodnar I.V. Optical properties of CuInSe2)i-x (2MnSe)x alloys. // Semiconductors, 2010. 44. № 5. P. 581-584.
Rustamov P.G., Safarov M.G., Aliev I.I., Ilyasov T.M. Issledovanie himicheskogo vzaimodejstviya v sisteme As2Se3 –MnSe // Zhurn. neorgan. himii.1978. T. 23. № 1. C. 151-155. Allazova N.M., Ilyasly T.M. Fazovoe ravnovesie v sisteme CuInSe2-Pb // Vestnik Bakinskogo universiteta, ser. est. nauk. 2008. № 4. S. 37-41.
Allazova H.M. Fazovaya diagramma sistemy CuInSe2-PbSe // Vestnik Bakinskogo Universiteta, ser.est.nauk. 2006. № 2. S. 23-27.
Aliev I.I., Ilyasly T.M., Gasangulieva Sh.A., Veliev Dzh.A. Fazovye ravnovesiya i stekloobrazovanie v sisteme AsSe- MnSe // Neorgan. materialy. 2011. T.47. № 7. C.784-787.
Fiziko-himicheskie svojstva poluprovodnikovyh veshestv. Spravochnik. M.: Nauka. 1979. 399 c. Primary Reference, Tatge. Nat. Dur. Stend. (U.S.) 1953. V.34. P. 5391.
CC BY-ND
A work licensed in this way allows the following:
1. The freedom to use and perform the work: The licensee must be allowed to make any use, private or public, of the work.
2. The freedom to study the work and apply the information: The licensee must be allowed to examine the work and to use the knowledge gained from the work in any way. The license may not, for example, restrict "reverse engineering."
2. The freedom to redistribute copies: Copies may be sold, swapped or given away for free, in the same form as the original.