PHYSICAL AND CHEMICAL STUDY OF THE SB2S3-CUCR2TE4 SYSTEM
Abstract
The interactions in the Sb2S3-CuCr2Te4 system were studied using complex methods of physicochemical analysis, differential thermal (DTA), X-ray phase (XRD), microstructural (MSA) analysis, as well as measurements of microhardness and density, and the T-x phase diagram was constructed. It was found that the system is a quasi-binary eutectic type. On the basis of the initial components, limited regions of solid solutions were found, which on the basis of Sb2S3 extend to 4 mol %, and on the basis of CuCr2Te4 up to -10 mol. %. Compounds Sb2S3 and CuCr2Te4 form a eutectic, the composition of which corresponds to 20 mol % CuCr2Te4 and melts at 420оС.
References
Magomedov A.Z., Gasanova L.G., Aliev A.O., Mamedov A.A., Aslanov M.A. Akusticheskie issledovaniya kristallov tverdyh rastvorov sistemy Sb2S3-Sb2Se3 // 2007 Fizika XIII. № 4. C.164-166.
Magomedov A.Z., Aliev A.O., Aslanov M.A., Musaeva S.M., Dzhavadova S.D. Osobennost temperaturnoj zavisimosti spektralnogo raspredeleniya fotochuvstvitelnosti segnetoelektrikov-poluprovodnikov Sb2S3-Sb2Se3 // Vestnik Bakinskogo Universiteta, ser. fizikomatematicheskih nauk, 2004, № 4, s.163 169.
Chen C, Li W, Zhou Y, Chen C, Luo M, Liu X, Zeng K, Yang B, Zhang C, Han J, Tang J. Optical properties of amorphous and polycrystalline Sb2Se3 thin films prepared by thermal evaporation // Applied Physics Letters. 2015. V. 107. № 4. P. 043905.
Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D J, Luo M, Cao Y, Cheng Y, Sargent E H, Tang J. Thin-film Sb2Se3 photovoltaics with oriented onedimensional ribbons and benign grain boundaries // Nature Photonics, 2015. V.9. № 6. P. 409–415.
Maghraoyi-Mehezi H., Ben Nasr T., Dachraoui M. Synthesis, structure and optical properties of Sb2Se3. 2013. V. 16. P. 179-184. https://doi.org/10.1016/j.mssp.2012.04.019
Haixu Qin, Jianbo Zhu, Bo Cui, Liangjun Xie, Wei Wang, Li Yin, Dandan Qin, Wei Cai, Qian Zhang, Jiehe Sui. Achieving a High Average zT Value in Sb2Te3-Based Segmented Thermoelectric Materials // ACS Applied Materials & Interfaces 2020. V.12. № 1. P. 945-952. DOI: 10.1021/acsami.9b19798
Liangjun Xie, Haixu Qin, Jianbo Zhu, Li Yin, Dandan Qin, Fengkai Guo, Wei Cai, Qian Zhang, Jiehe Sui. Realizing Excellent Thermoelectric Performance of Sb2Te3 Based Segmented Leg with a Wide Temperature Range Using One‐Step Sintering. Advanced // Electronic Materials 2019. V. 83. P.
DOI: 10.1002/aelm.201901178
Eliana M.F.Vieira, Joana Figueirab, Ana L.Piresc, Jose Griloa, Manuel F.Silva, Andre M.Pereirac, Luis M.Goncalves. Enhanced thermoelectric properties of Sb2Te3 and Bi2Te3 films for flexible thermal sensors //Journal of Alloys and Compounds. 2019. V. 774. № 5. February, P. 1102-1116. https://doi.org/10.1016/j.jallcom.2018.09.324
Bin Xu, Jing Zhang, Gongqi Yu, Shanshan Ma, Yusheng Wang, and Yuanxu Wang Thermoelectric properties of monolayer Sb2Te3 // Journal of Applied Physics. 2018. V.124. P.165104; https://doi.org/10.1063/1.5051470.
Kulbachinskii V.A., Kytin V.G., Zinoviev D.A. et al. Thermoelectric Properties of Sb2Te3-Based Nanocomposites with Graphite // Semiconductors. 2019. V. 53. P. 638–640 doi:10.1134/S1063782619050129
Kolenko E.A. Termoelektricheskie ohlazhdayushie pribory. M.: Nauka. 1967. 258 s.
Ismailov F.I., Aliev I.I., Aliev A.A. Sintez i fiziko- himicheskoe issledovanie tverdyh rastvorov (Bi2Sb5Se3Te6I3)1-h(Pr)h ,,n”-tipa. // Himicheskie Problemy. 2006. № 4. C. 42-45.
Ismailov F.I., Aliev I.I., Sadygov F.M., Mamedova S.G., Aliev A.A. Fiziko-himicheskie issledovanie tverdyh rastvorov (Bi2Te3+Sb2Se3+SbI3 )1-x(Sm)x // Azerb. Him. zhurn. 2008. № 1. C.67-69.
Babicyna A.A., Koneshova T.I., Kalinnikov V.T. Issledovanie vozmozhnosti obrazovaniya tverdyh rastvorov v sistemah CuCr2Se4-InSe; CuCr2Se4-In2Se3; CuCr2Se4-CuInSe2. // Neorgan, materialy. 1981. T. 17. № 9. S.1716.
Babicyna A.A., Emelyanova T.A., Koneshova T.I. Vzaimodejstvie v sisteme Si-Sr- Te. // Zhurn. neorgan. himii. 2000. T. 45. № 8. S.1397-1400.
Yamashita O., Yamauchi H., Yamaguchi Y. et.al. Magnetic Properties of the System CuCr2Se4.xYx (Y=C1, Br) // J. Phys. Soc. Jap. 1979. V. 47. № 2. P. 450-454.
Koroleva L.I., Lukina L.N., Busheva E.V., Shabunina GG., Aminov T.G Novye magnitnye poluprovodniki CuCr2Se4-xSbx // Izv. AN SSSR. Neorgan. materialy. 1999. T. 35. № 12. S.1425-1428.
Aminov T.G, Arbuzova T.N., Busheva E.V., Shabunina GG. Issledovanie tverdyh rastvorov SuSg2-hSSbhSe4 i Cu1-ySbyCr2Se4 // Izv. AN SSSR. Neorgan. materialy. 2000. T. 36. № 2. S. 164-168.
Shumilkin N. S. Vzaimodejstvie v sistemah Su-In-Sg-Se(Te) v oblasti sushestvovaniya magnitnyh faz s vysokimi temperaturami magnitnogo uporyadocheniya (Ts). Dis. na soisk. kand. him. nauk. RAN IONH im. N.S.Kurnakova. 2002. 121 s.
Riedel E., Horvath E.Z. Roentgenographische Untersuchund der systeme CuCr2(S1-x Sex)4 und CuCr2(Se1-xTex)4 // Anorg. Allg. Chem. 1973. V.399. P.219-223.
Fiziko-himicheskie svojstva poluprovodnikovyh veshestv. Spravochnik. Moskva. Izd. Nauka.1979. 339 c.
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
CC BY-ND
A work licensed in this way allows the following:
1. The freedom to use and perform the work: The licensee must be allowed to make any use, private or public, of the work.
2. The freedom to study the work and apply the information: The licensee must be allowed to examine the work and to use the knowledge gained from the work in any way. The license may not, for example, restrict "reverse engineering."
2. The freedom to redistribute copies: Copies may be sold, swapped or given away for free, in the same form as the original.